Phương pháp sinh kế tiếp có thể giải quyết được các bài toán liệt kê khi ta nhận biết được cấu hình đầu tiên & cấu hình cuối cùng của bài toán. Tuy nhiên, không phải cấu hình sinh kế tiếp nào cũng được sinh một cách đơn giản từ cấu hình hiện tại, ngay kể cả việc phát hiện cấu hình ban đầu cũng không phải dễ tìm vì nhiều khi chúng ta phải chứng minh sự tồn tại của cấu hình. Do vậy, thuật toán sinh kế tiếp chỉ giải quyết được những bài toán liệt kê đơn giản. Để giải quyết những bài toán tổhợp phức tạp, người ta thường dùng thuật toán quay lui (Back Track) sẽ được trình bày dưới đây.
Nội dung chính của thuật toán này là xây dựng dần các thành phần của cấu hình bằng cách thử tất cả các khả năng. Giả sử cần phải tìm một cấu hình của bài toán x = (x1, x2,.., xn) mà i-1 thành phần x1, x2,.., xi-1 đã được xác định, bây giờ ta xác định thành phần thứ i của cấu hình bằng cách duyệt tất cả các khả năng có thể có và đánh số các khả năng từ 1..ni. Với mỗi khả năng j, kiểm tra xem j có chấp nhận được hay không. Khi đó có thể xảy ra hai trường hợp:
- Nếu chấp nhận j thì xác định xi theo j, nếu i=n thì ta được một cấu hình cần tìm, ngược lại xác định tiếp thành phần xi+1
- Nếu thử tất cả các khả năng mà không có khả năng nào được chấp nhận thì quay lại bước trước đó để xác định lại xi-1
void Try(int i) { int j; for (j = 1; j < ni; j++) { if (<Chấp nhận j >) { <Xác định xi theo j> if (i == n) < Ghi nhận cấu hình > ; else Try(i + 1); } } }Có thể mô tả quá trình tìm kiếm lời giải theo thuật toán quay lui bằng cây tìm kiếm lời giải sau:
Dưới đây là một số ví dụ sử dụng thuật toán quay lui.